
ar
X

iv
:c

on
d-

m
at

/0
30

65
81

v1
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  2
3 

Ju
n 

20
03

Influence of progressive central hypovolemia

on multifractal dimension of cardiac interbeat intervals.

Bruce J. West1,2,3, Nicola Scafetta1,2, William H. Cooke4 and Rita Balocchi5

1 Physics Department, Duke University, Durham, NC 27708

2Pratt School EE Dept., Duke University,

P.O. Box 90291, Durham, NC 27708

3 Mathematics Division, Army Research Office,

Research Triangle Park, NC 27709.

4 Departments of Biomedical Engineering and Biological Sciences,

Michigan Technological University, Houghton MI 49931. and

5 Istituto Fisiologia Clinica, CNR-Area Ricerca San Cataldo, Via Moruzzi 1, 56124-Pisa

(Dated: May 7, 2010)

Abstract

We analyzed the heartbeat time series of 12 human subjects exposed to progressive central

hypovolemia with lower body negative pressure. Two data processing techniques based on wavelet

transforms were used to determine the change in the non-stationary nature of the time series with

changing negative pressure. Our results suggest that autonomic neural mechanisms driving cardiac

interbeat intervals during central hypovolemia go through various levels of multifractility.
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I. INTRODUCTION

In the past two decades we have witnessed an explosion in the biophysics and physiological

literature with regard to the identification of phenomena having long-term memory and

probability densities that extend far beyond the typical tail region of Gaussian distributions.

One way these processes have been classified is as 1/f-phenomena, since their time series

have spectra that are inverse power law in frequency or their probabilities have an inverse

power-law distribution. In either case the underlying structure is fractal, either in space,

time or both [1]. Physiological signals, such as the heartbeat interval time series studied

herein, are typically generated by complex self-regulatory systems that process inputs with

a broad range of characteristics. Such physiological time series fluctuate in an irregular

and complex manner such as shown in Fig. 1 and the statistics of these fluctuations often

exhibit self-affine or fractal properties [1]. Such processes do not possess dominant time

scales, but they can frequently be characterized by fractal dimensions [2]. Ivanov et al

[3] established that healthy human heartbeat intervals, rather than being fractal, exhibit

multifractal properties and they uncovered the loss of multifractality for a life-threatening

condition known as congestive heart failure. Latka et al. [4] similarly determined that

cerebral blood flow in healthy humans is also multifractal.

Recently, Scafetta et al. [5] studied how the fractal and multifractal nature of the human

stride interval is modified by changing the pace velocity in both free and metronomically

constrained walking conditions and introduced a neuronal super central pattern generator

(SCPG) to model the human stride interval time series [6]. In particular, it was determined

that an increase of neural stress, induced by a faster or slower pace than normal, causes

a slight increase of both fractal and multifractal properties of the free pace stride interval

time series [5, 6]. In the present analysis we used lower body negative pressure (LBNP) to

induce progressive central hypovolemia and determined how such stimulation of autonomic

neural control mechanisms modified the statistical nature of heart-beat time series. A LBNP

is applied by sealing supine subjects at the level of the iliac crest in an air-tight chamber

connected to a vacuum pressure control system. The magnitude of LBNP is carefully regu-

lated to induce progressive central hypovolemia and autonomic cardiovascular compensatory

mechanisms are evaluated. LBNP decreases central venous pressure, stroke volume and car-

diac output by inducing a footward fluid shift, and increases heart rate and total peripheral
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resistance through parasympathetic neural withdrawal and sympathetic neural activation

[7]. The magnitude of changes in autonomic neural activity can be estimated non-invasively

in the frequency domain, but common analyses incorporating either fast-Fourier based power

spectra [8] or autoregressive modeling [9] do not account for inherent multifractality or non-

stationarity underlying complex cardiovascular regulatory mechanisms. For this reason, in

the present study we applied two wavelet-based techniques to study the fractal and mul-

tifractal dependence of the cardiovascular responses to progressive central hypovolemia to

determine how cardiovascular stress affects fluctuations of the data on a hierarchy of time

scales. For example, the analysis allows us to isolate the influence of the breathing cycle

component on heart rate. We determine that in this situation, similar to the situation in

gait dynamics [5, 6], an induced stress, in this case through central hypovolemia, causes

a slight increase in both the fractal and multifractal properties of the heartbeat interval

time series. We suggest that such changes in fractal and multifractal properties characterize

neural network responses of biological systems to physiological stress.

In Sec. II we present the heart interbeat interval data analyzed herein; Sec. III is devoted

to a review of the techniques of analysis; Sec. IV is devoted to a detailed analysis of the

heartbeat interval time series of 12 normal subjects and in Sec. V we draw some conclusions.

II. HEART INTERBEAT DATA

In the main experiment we studied twelve healthy men between the ages of 26 and 40

after they had been informed of the nature of the experiment and had signed a consent form,

approved by the institutional human use committee of the U.S. Army Institute of Surgical

Research, Ft Sam Houston, TX. Subjects were positioned supine in an LBNP chamber,

sealed at the waist to the level of the iliac crest, and instrumented with a standard 4-

lead electrocardiogram. Because respiratory frequency and depth may seriously confound

interpretation of autonomic rhythms [10], subjects breathed in synchrony with a metronome

set at a pace of 15 breaths per minute (0.25 Hz). Electrocardiogram data were sampled at

500 Hz during 3-minute periods of controlled frequency breathing at negative pressure of 0,

-15, -30, -45, -60, and again at 0 mmHg. Data were recorded directly to computer (Windaq,

Dataq Instruments, Akron, OH) and then imported into a customized software program for

analysis [Cardio-Pulmonary Research Software for Windows, (WinCPRS), Absolute Aliens
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Ay, Turku, Finland]. R-waves were automatically detected from continuous waveforms and

marked at their occurrences in time to obtain heartbeat periods (tachogram) as shown in

Fig. 1.

In a second experiment, conducted at the Institute of Clinical Physiology, CNR-Pisa,

we compared the fluctuations of a tachogram with the contemporary respiratory signal re-

garding one person. This experiment was originally done with thirteen healthy volunteers.

These volunteers underwent an experimental session in which an electrocardiographic (ECG)

derivation and the respiratory signal were simultaneously and continuously recorded at 1000

Hz sampling frequency. The ECG was recorded using standard electrodes, while the respi-

ratory signal was detected through a polymeric piezoelectric dc-coupled transducer inserted

into a belt wrapped around the chest. During the experimental session the subjects were

comfortably sitting and breathing freely.

III. FRACTAL AND MULTIRESOLUTION ANALYSIS BASED ON WAVELETS

The analysis we apply to heartbeat time series emphasizes the scaling nature of the

phenomenon. In the next two subsections we briefly review the two techniques we use in our

analysis. The first method determines the distribution of Hölder exponents of a time series,

by means of the continuous wavelet transform (CWT) [11]. This technique is used to study

the fractal and multifractal nature of a time series and has already been used to analyze the

human stride interval time series [5]. The second method uses the wavelet multiresolution

analysis (WMA) of a time series, by implementing the maximum overlap discrete wavelet

transform (MODWT) [12]. The latter technique provides a detailed study of the fluctuations

of a time series on a scale-by-scale basis.

A. Approximate estimation of local Hölder exponents and their probability dis-

tribution.

Mandelbrot [13] showed that many natural phenomena are described by self-affine, cor-

related, scaling time series and as we mentioned above, heartbeat data fall into this cate-

gory. The scaling properties of the fractal noise studied by Mandelbort, fractional Gaussian

noises (fGn) [13], are characterized by an exponent that he called H in honor of Hurst.
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Consequently, if X(t) is a fractal process with Hurst exponent H and c is a constant, then

X (t) = X(ct)/cH is another fractal process with the same statistics. The phenomenon of

fGn has a spectrum with the inverse power-law form

P (f) ∝ f−β = f 1−2H ≈ f−1−2h0 , (1)

where f is the frequency, H is the Hurst exponent and h0 is the average of the Hölder

exponent distribution among the singularities of the time series. We can also express a

fractal noise {ξi} through the equivalent representation of the autocorrelation function [14]

C(r) =
〈ξi ξi+r〉
〈ξ2

i 〉
∝ r2H−2 ≈ r2h0 . (2)

The self-affine property expressed by (1) and the relation between β, H and h0 are theo-

retically valid only for a infinitely long monofractal time series. Figure 2 shows a computer

generated realization of fGn with Hurst exponent H = 1 or Hölder exponent h0 ≈ 0, also

known as 1/f noise or pink noise. This type of noise is important because it represents a

threshold between the persistent-stationary noise (−0.5 < h0 < 0) and the non-stationary

noise (h0 > 0). Moreover, the 1/f noise is characterized by an autocorrelation function

C(r) that does not depend on the distance r, Eq. (2). The random noise or white noise is

characterized by h0 ≈ −0.5 whereas the random walk or Brownian motion is characterized

by h0 ≈ 0.5. In general, the higher the Hölder exponent, the smoother the time series.

As seen in Figure 2, a fractal noise is characterized by trends and discontinuities that

give a particular geometric shape to the signal. The rapid changes in the time series are

called singularities of the signal and their strength is measured by a Hölder exponent [11].

Given a function f(x) with a singularity at x0, the Hölder exponent h(x0) at such a point

is defined as the supremum of all exponents h that fulfills the condition:

|f(x) − Pn(x− x0)| ≤ C|x− x0|h , (3)

where Pn(x− x0) is a polynomial of degree n < h.

The Hölder exponent of a singularity can be evaluated by using the wavelet transform

[12, 15, 16]. Wavelet transforms make use of scaling functions that have the property of being

localized in both time and frequency. A scaling coefficient s characterizes and measures the

width of a wavelet. Given a signal f(x), the continuous wavelet transform (CWT) of f(x)

is defined by

Ws,x0
(f) =

∞
∫

−∞

1

s
ψ

(

x− x0

s

)

f(x) dx , (4)
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where the kernel ψ(u) is the wavelet filter centered at the origin, u = 0, with unit width,

s = 1. A widely adopted choice of the kernel ψ(u) is the so-called Mexican Hat, that is, the

second derivative of a Gaussian.

The wavelet transform can be used to determine the Hölder exponent of a singularity be-

cause the wavelet kernel ψ(u) can be chosen in such a way as to be orthogonal to polynomials

up to degree n, that is, such that the following properties are fulfilled

+∞
∫

−∞

1

s
ψ

(

x− x0

s

)

xm dx = 0 ∀m, 0 ≤ m ≤ n . (5)

In fact, if (5) holds true, it is easy to prove that if the function f(x) fulfils condition (3), its

wavelet transform at x = x0 is given by

Ws,x0
(f) = C|s|h(x0)

+∞
∫

−∞

|u|h(x0) ψ(u) du ∝ |s|h(x0) , (6)

where u = (x−x0)/s. Therefore, at least theoretically, the Hölder exponent of a singularity

that is localized in x0, can be evaluated as the scaling exponent of the wavelet transform

coefficient, Ws,x0
(f), for s→ 0.

Even if Eq. (6) can be evaluated for any position x0, we are interested only in the cusp

singularities of the time series. Mallat et al. [16, 17, 18] show that the Hölder exponent

of these singularities can be evaluated by studying the scaling exponent h(x0) along the

so-called maxima line that converges towards the singularity. The maxima lines are defined

by the extremes of the wavelet transform coefficients (4) at each wavelet scale s. Arneodo

et. al. [19, 20] proved that WTMM can be used to define a multifractal-like formalism that

gives the stochastic properties of the singularities of a fractal or multifractal noise. This

methodology has been recently used to determine the multifractal nature of many signals,

for example, that for human heartbeats [3].

However, the above method presents some problems of stability when applied to observa-

tional data. In fact, the spectrum can be corrupted by the divergences of negative moments

[16, 20, 21] or by the outliers, that is, the end points of the sample singularities [11]. Differ-

ent methods have been suggested to remove the divergences due to the negative moments

of the multifractal partition function, for example, by chaining the wavelet maxima across

scales [16] or, more efficiently, by bounding the Hölder exponent of the maxima line by using

the slope wavelet [21]. The corruption of the singularity spectrum due to the outliers is more

difficult to deal with.
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Struzik [11] suggested an alternative method that has the ability to determine an approx-

imate value of local singularity strength. The spectrum may then be evaluated from these

approximate values. The idea is to estimate the mean Hölder exponent h as a linear fit of

the following equation

log[M(s)] = h log(s) + C , (7)

where the function M(s) is obtained via the partition function, and the mean Hölder expo-

nent h is the local version of the Hurst exponent H [13]. More precisely, for a monofractal

noise with Hurst exponent H , we have h = H − 1 because the Hurst exponent is evaluated

by integrating the noise [2, 13]. Here again the equality is only rigorously true for an in-

finitely long monofractal noise data set. The approximate local Hölder exponent ĥ(x0, s) at

the singularity x0 can now be evaluated as the slope

ĥ(x0, s) =
log(|Ws,x0

(f)|) − (h log(s) + C)

log(s) − log(sN)
, (8)

where sN is the length of the entire wavelet maxima line tree, that is, the maximum available

scale that coincides with the sample length sN = N , and x0 belongs to the set Ω(s) of all

wavelet maxima at the scale s that assume the value Ws,x0
(f).

While further details may be found in the papers by Struzik [11] and in Ref. [5], here we

focus on the interpretation of the final output, that is, the distribution of estimated local

Hölder exponents of a time series as given in [5]. Fig. 3 shows the histogram of Hölder

exponents obtained using a computer-generated data set with a Hurst exponent H = 1

shown in Fig. 2. The histogram is fitted with a normalized Gaussian function of the type

g(h) =
1√

2π σ
exp

[

−(h− h0)
2

2 σ2

]

(9)

that captures the two main characteristics of the time series: (a) the average of Hölder

exponent h0 that gives an estimate of the fractal nature of a time series; (b) the width of

the distribution given by the standard deviation σ that measures the variability of the local

Hölder exponents, that is, the multifractality of a time series. Finally, as Scafetta et al.

[5] explained, a monofractal time series presents a particular width of the Hölder exponent

distribution that depends on the length of the time series, as Eq. (8) suggests. Therefore,

a time series will present a multifractal nature only if the width of its Hölder exponent

distribution is larger than that of a monofractal time series of the same length. In general,

given two time series of the same length, if σ1 > σ2, we may say that the time series ‘1’ has

a stronger multifractal character than time series ‘2’.
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B. Wavelet multiresolution analysis.

The second wavelet-based technique that we implement allows a detailed study of the

fluctuations of a time series on a scale-by-scale temporal basis. The MODWT [12] is almost

independent of the particular family of wavelets used in the analysis and is the basic tool

needed for studying the multiresolution analysis of time series of N data points via wavelets.

In the book of Percival and Walden, [12], the reader can find all the mathematical details.

In this paper we make use of the Daubechies least asymmetric scaling wavelet filter (LA8)

that looks like the Mexican Hat, but is also weakly asymmetric; a fact that makes LA8 filter

more malleable than the Mexican Hat. The WMA via MODWT establishes that given an

integer J such that 2J < N , where N is the number of data points, the original time series

represented by the vector X can be decomposed on a hierarchy of time scales represented

by a smooth part plus details as follows:

X = SJ +
J

∑

j=1

Dj , (10)

with the quantity Sj generated by the recursion relation

Sj−1 = Sj +Dj . (11)

The detail Dj of Eq. (10) represents changes on a scale of τ = 2j, while the smooth SJ

represents the smooth wavelet averages on a scale of τJ = 2J . In the same way we refer to

as residuals the curves

RJ =
J

∑

j=1

Dj , (12)

such that X = SJ +RJ .

Fig. 4 shows that WMA of the heartbeat data shown in Fig. 1 for J=4. The detail

curves show the main characteristic fluctuation that characterize each time scale that may

be expressed in the number of beats, as done in Fig. 4, or in physical time units. We shall

use these detail curves to establish the dependence on the pressure of the period measured

in both number of beats and in physical time units of the fluctuations of the heartbeat at

different wavelet scale.
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IV. ANALYSIS OF THE HEARTBEAT TIME SERIES

Fig. 1 shows the heartbeat time series at the four conditions of LBNP for a typical

individual. In this work, we analyze the heartbeat interval time series for 12 individuals. In

the time series data shown in the figure the increase in the average heart rate with increasing

negative pressure is clear, as is the return to normal with the return of the negative pressure

to zero. To emphasize this effect, in Fig. 5 we plot the average heartbeat interval against the

pressure for 12 individuals. The figure shows that the average heartbeat interval manifests

a steady decrease from ∆t ≈ 980 ± 50 msec at P = 0 mmHg to ∆t ≈ 710 ± 50 msec at

P = −60 mmHg. At the recovery, the average heartbeat interval is slightly larger than the

initial one; we measure ∆t ≈ 1050± 50 msec. The error bars measure the average standard

deviation of the variability of the heartbeat interval for each individual and do not seem to

significantly change with the pressure.

A careful visual analysis of Fig. 1 suggests that by increasing the negative pressure,

the heartbeat interval time series becomes smoother. As explained in the previous section,

a decrease of randomness or an increase of the smoothness of a time series may be easily

detected by the Hölder exponents of the time series that measure the strength of the singu-

larities. The Hölder exponents increase with the smoothness of a time series. Fig. 6 shows

an estimation of the Hölder exponents of the time series of the heartbeat interval time series

shown in Fig. 1. We use the algorithm discussed in the previous section to obtain these

exponents. Fig. 6 shows that the Hölder exponents significantly increase with the pressure,

indicating that the fractal dimension of the heartbeat interval monotonically decreases with

negative pressure. At recovery, the fractal properties return to their original values.

Fig. 7 depicts the average Hölder exponent, indicated by the mean value h0, and by

the standard deviation σ for the 12 individuals against the pressure. As explained in the

previous section the standard deviation measures the variability of the Hölder exponent

values that can be related to the multifractality of a time series. The data indicates that

the average mean value has a steady increase from h0 ≈ 0.177 ± 0.072 at P = 0 mmHg to

h0 ≈ 0.332 ± 0.104 at P = −60 mmHg. The standard deviation is indicated by the error

bars. At the recovery when the negative pressure returns to zero we get h0 ≈ 0.157± 0.062.

We also observe that by increasing the negative pressure the average standard deviation

tends to increase. The values we measure are σ0 = 0.072, σ15 = 0.062, σ30 = 0.066,
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σ45 = 0.077, σ60 = 0.104 and σ0 = 0.062 at the recovery. As anticipated, an increase of the

standard deviation of the Hölder exponents for equal length time series may be interpreted

as an increase of multifractal properties of the time series. Even if the time series taken for

each value of the pressure are relatively short (approx. 200 data points for P = 0 mmHg

and approx. 300 data points for P = −60 mmHg) and, therefore, the statistics may be

not optimum. However, the almost monotonic increase of the standard deviation with the

pressure followed by an abrupt decrease at the recovery may reasonably indicate a reliable

increase of the multifractality of the heartbeat interval time series with increasing negative

pressure.

To emphasize the properties of heartbeat data at various temporal resolutions we need to

make use of WMA of the data. In Fig. 4 we show the WMA of the heartbeat time interval

depicted in Fig. 1. These data are analyzed using the MODWT with the LA8 wavelet filter

for four levels of resolution, that is, until the wavelet scale J = 4. As explained in the

previous section the smooth curve S4 captures the smooth trend of the fluctuation at the

scale of τ = 24 = 16 consecutive heartbeats. The details curves D1-D4 capture the local

fluctuations of the signal at each of the four time scale τ = 2i. This means, for example,

that D1 captures the fluctuations of the original signal with a period that is approximately

between 2 and 4 beats. We recall that the shortest possible period that can be detected in

a time series is 2 time units. The detail D2 captures the fluctuations with a period in the

interval between 4 and 8 beats, and similarly for the following details. According to Eq.

(10) the sum of the four details D1-D4 and the smooth curve S4 gives the original datasets

shown in Fig. 1.

Fig. 4 stresses the great utility of analyzing times series of complex systems through the

WMA via the MODWT. In fact, the wavelet sensibility to the local changes of the signal

allows us to easily extract information that is impossible to obtain by using, for example,

the Fourier transform since the latter averages the changes of the entire signal at each

Fourier transform frequency. For example, Fig. 4 clearly shows that the amplitude of the

local decomposition is not constant but fluctuates in time. In particular we notice that the

amplitude of the fluctuations captured by the details D3 and D4 does not seem to change

systematically with the pressure. Therefore, we can conclude that the change of pressure do

not influence significantly the slow fluctuations with a period larger than 8 heartbeats.

On the contrary, the details D1 and D2 clearly show a significant reduction of the ampli-
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tude of the fast fluctuation with increasing negative pressure. At the recovery, the amplitude

of the fluctuations returns to a value similar to the initial one for P = 0 mmHg. The re-

duction of the amplitude of the fast fluctuations manifests itself with the increase of the

smoothness of the heartbeat interval time series that we have already noticed to occur by

increasing the negative pressure, as Fig 1 shows. We have also noticed that an increase of

the smoothness yields an average increase of the local Hölder exponents, that are associated

with the fractal dimension of a time series, as explained earlier and shown in Figs. 6 and 7.

Fig. 4 shows the importance of using WMA because we are able to isolate the component

of the signal of the heartbeat interval time series that presents dependence on the pressure

and identifies it with the changes captured by the wavelet details D1 and D2.

Because each detail curve captures the variation of the signal inside a frequency or period

range, it is possible to also study how the average period of the fluctuations at a particular

wavelet scale are affected by the pressure. Fig. 8 shows the average mean period measured

in number of beats of the fluctuation associated to each detail curve obtained by the WMA

for 12 subjects. We stress that these calculations are made without any kind of interpolation

between the data. So the natural unit of the time sequence is the number of heartbeats.

To get the results in physical time units we have to convert the results obtained with the

heartbeat number in physical time units by using the original R-R sequence or we may

attempt a direct calculation of WMA after an interpolation procedure that generates an

even time series in a physical units. However, interpolation alters data, so we prefer the first

procedure. Fig. 9 shows the average mean period measured in physical time units of the

same fluctuations. We decided to plot the results concerning D1, R2, D3 and D4 curves.

We stress that we are considering the residual R2 that is given by R2 = D1 +D2 according

to (11) rather than the D2 curve. We prefer to use the residual R2 instead of the detail

D2 because the range from 2 to 8 heartbeats is supposed to capture the high frequency

component of the R-R signal that is coupled with the respiratory signal. The residual R2

fully contains such information that, instead, is split between D1 and D2 curves with D1

being a kind of harmonic of D2. For this experiment we recall that the subjects breathed in

synchrony with a metronome sets a pace of 15 breaths per minute (0.25 Hz). So we expect

to find such a frequency in the R2 curves. The detail D3 captures the range from 8 to 16

heartbeats and corresponds to the low frequency component of the R-R signal. Higher levels

of details, that are included in the S3 smooth curve, capture the very-low component of the
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interbeat signal.

The results plotted in Figs. 8 and 9 concerning the detail curves D3 and D4 show a

more erratic behavior with large errorbars and their interpretation remains unclear. Fig. 8

shows an increase of the heartbeat number for cycles captured by D3 curve with increasing

negative pressure. Fig. 9 shows that in physical time unit the period of these D3 cycles

remains almost constant at almost 10 seconds, that is, at a frequency of 0.1 Hz, while

the period of the cycles associated with D4 detail curve tends to decrease with increasing

negative pressure.

The results concerning the fast fluctuations, curves D1 and R2, show more regular pat-

terns. In particular we notice that by increasing the negative pressure, Fig. 8 shows that the

average mean period of the fluctuations measured in heartbeat number is almost constant

for details D1, D3 and D4. Instead, the results concerning the R2 residual shows a sensitive

steady increase of the average number of heartbeats from almost 4.1 heartbeats per cycle to

4.9 heartbeats per cycle with increasing negative pressure from P = 0 mmHg to P = −60

mmHg. At recovery the average number of heartbeats returns to 4.1 heartbeat per cycle. By

looking at the same results expressed in physical time units, see Fig. 9, we observe that the

average period of the fluctuations captured by the R2 residual curve is almost constant with

the pressure. We measure 4 seconds that correspond to a frequency of 0.25 Hz. Instead, the

average period of the fluctuations captured by the D1 detail curve shows a steady decrease

from 3.2 to almost 2.1 seconds with increasing negative pressure. The different behaviors

characterizing the wavelet detail D1 and R2 depicted in Figs. 8 and 9, suggest that the

two curves can be partially decoupled because they respond differently to the increases in

negative pressure.

Fig. 10 shows a comparison between the R2 residual curve of the heartbeat interval and

respiratory signals of a person for 60 seconds under normal conditions. These data were ob-

tained in a second experiment. Figure 10 shows a very strong correspondence between the

fluctuations captured by the R2 residual curve and the respiratory cycle. This comparison

suggests that the R2 residual curve has the physiological meaning of describing the fluctua-

tions of respiratory sinus arrhythmia. In fact, as Fig. 9 shows, the fluctuations captured by

the R2 residual have the frequency of 0.25 Hz of the respiratory signal that is kept constant

during the hypovolemia experiment.
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V. SUMMARY AND CONCLUSIONS

The analysis of the data suggests that progressive central hypovolemia induced with

LBNP:

1) Causes decreases of R-R intervals and, therefore, increases of heartbeat rate.

2) Decreases heart rate variability and therefore smoothes out the heartbeat time series.

3) Reveals that two measures of the decrease in the heartbeat rate variability with in-

creasing negative pressure are an increase in the Hölder exponent and a decrease in the

fractal dimension of the time series.

4) Reveals that accompanying the increase in the Hölder exponent, with increasing neg-

ative pressure, is an increase in the multifractality of the time series as measured by the

width of the Hölder exponent distribution. This non-stationary aspect of the data was also

observed in the study of human gait data, when the walkers were put under physical stress

by asking them to walk faster or slower than normal [5, 6].

5) Reveals that independent measures of the heartbeat rate response to the increases in

negative pressure are the wavelet transform details D1 and D2. Both these non-periodic

functions display a monotonic decrease in amplitude with increasing negative pressure.

6) Suggests that the amplitude of the higher-order details, D3 and D4, are independent

of the changes in the negative pressure. However, the period of the cycles captured by D4

tends to decrease with increasing negative pressure. This suggests that part of the spectral

energy of the very-low frequency (f < 0.04 Hz) component of the RR signal moves toward

the low frequency (0.04 < f < 0.15 Hz) component of the same signal.

7) Suggests that the wavelet transform residual curve R2 is driven by the respiratory cycle.

The residual R2 captures the high frequency component of the RR signal ( 0.15 < f < 0.4

Hz). This is an indication that the wavelet transform is able to sort through the fluctuations

of the cardiac time series and highlight particular physiological phenomena.

These separate observations made from the analysis of the heartbeat time series stressed

by central hypovolemia are interesting in themselves, but they suggest a much more

significant finding. They suggest that the influence of stress on a physiological system

is manifest in the non-stationary character of the time series and that the degree of

non-stationarity can be measured through the level of fractality and multifractality of the

time series regarding the stressed system.
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FIG. 1: Typical response of the heartbeat period at pressure change.
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FIG. 4: Wavelet multiresolution analysis for J = 4 for the data shown in Fig. 1.
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for the 12 datasets.

20



 0
 

 2
 

 4
 

 6
 

 8
 

 10
 

 12
 

 14
 

 16
 

 18
 

 20
 

 0  -15  -30  -45  -60

recovery

 0  

P
e

ri
o

d
 (

b
e

a
t)

Pressure   (mmHg)

 D1
 R2

 D3

 D4

FIG. 8: Average mean period measured in number of heartbeats of the fluctuation associated to

D1, R2, D3, and D4 detail curve obtained by the WMA for J = 4 for the 12 datasets.

21



 0
 

 2
 

 4
 

 6
 

 8
 

 10
 

 12
 

 14
 

 16
 

 18
 

 20
 

 0  -15  -30  -45  -60  0  

M
a

in
 f

lu
ct

u
a

tio
n

 p
e

ri
o

d
  

 (
se

c)

Pressure   (mmHg)

 D1
 R2

 D3

 D4

FIG. 9: Average mean period measured in physical time units of the fluctuation associated to D1,

R2, D3, and D4 curve obtained by the WMA for J = 4 for the 12 datasets. Note that the period

associated to the residual R2 remains 4 second under different intensity of negative pressure. Four

seconds is the period of the breathing cycle.

22



-0.29

-0.27

-0.25

-0.23

-0.21

-40

-20

 0

 20

 40

 60

 0  20  40  60  80  100  120

(m
ill

iv
o

lts
) 

  
  

  
  

  
  

  
  

 (
m

se
c)

time   (sec)

respiratory signal

R2 : heartbeat signal

-------------------

FIG. 10: Comparison between R2 detail curve of the heartbeat interval signal and the contempo-

rary respiratory signal of a subject.

23


	Introduction
	Heart interbeat data 
	Fractal and multiresolution analysis based on wavelets
	Approximate estimation of local Hölder exponents and their probability distribution.
	Wavelet multiresolution analysis.

	Analysis of the heartbeat time series
	Summary and conclusions
	References

